
Sphinx-3 to 3.2

Mosur Ravishankar
School of Computer Science, CMU

Nov 19, 1999

19 Nov 1999 Sphinx Speech Group, CMU-SCS (rkm@cs.cmu.edu)

Outline
• Recognition problem

• Search for the most likely word sequence matching the input
speech, given the various models

• Illustrated using Sphinx-3 (original)

• Lextree search (Sphinx-3.2)
• Search organization

• Pruning

• Experiments

• Conclusion

19 Nov 1999 Sphinx Speech Group, CMU-SCS (rkm@cs.cmu.edu)

Recognition Problem
• Search organization

• Continuous speech recognition

• Cross-word triphone modeling

• Language model integration

• Pruning for efficiency

19 Nov 1999 Sphinx Speech Group, CMU-SCS (rkm@cs.cmu.edu)

Search Organization in Sphinx-3
• Flat lexical structure

• Cross-word triphone modeling
• Multiplexing at word beginning
• Replication at word end
• Single-phone words: combination of both

• LM score applied upon transition into word
• Trigram language model
• However, only single best history maintained

• Beam-based pruning
• Long-tailed distribution of active HMMs/frame

19 Nov 1999 Sphinx Speech Group, CMU-SCS (rkm@cs.cmu.edu)

Sphinx-3 Lexical Structure
• Flat lexicon; every word treated independently:

• Evaluating an HMM w.r.t. input speech: Viterbi search
• Score the best state-sequence through HMM, given the input

UW

ONE

TWO

THREE

T

AHW N

RTH IY

5-state HMM

19 Nov 1999 Sphinx Speech Group, CMU-SCS (rkm@cs.cmu.edu)

Viterbi Search

time
Initial state initialized with path-score = 1.0

19 Nov 1999 Sphinx Speech Group, CMU-SCS (rkm@cs.cmu.edu)

Viterbi Search (contd.)

time

State with best path-score
State with path-score < best
State without a valid path-score

P (t)j = max [P (t-1) a b (t)]i ij ji

Total path-score ending up at state j at time t

State transition probability, i to j

Score for state j, given the input at time t

19 Nov 1999 Sphinx Speech Group, CMU-SCS (rkm@cs.cmu.edu)

Viterbi Search (contd.)

time

19 Nov 1999 Sphinx Speech Group, CMU-SCS (rkm@cs.cmu.edu)

Viterbi Search (contd.)

time

19 Nov 1999 Sphinx Speech Group, CMU-SCS (rkm@cs.cmu.edu)

Viterbi Search Summary
• Instantaneous score: how well a given HMM state matches

the speech input at a given time frame
• Path: A sequence of HMM states traversed during a

given segment of input speech
• Path-score: Product of instantaneous scores and state

transition probabilities corresponding to a given path
• Viterbi search: An efficient lattice structure and algorithm

for computing the best path score for a given segment
of input speech

19 Nov 1999 Sphinx Speech Group, CMU-SCS (rkm@cs.cmu.edu)

Single Word Recognition
• Search all words in parallel

• Initialize start state of every word with path-score 1.0
• For each frame of input speech:

• Update path scores within each HMM
• Propagate exit state score from one HMM to initial state of its

successor (using Viterbi criterion)

• Select word with best exit state path-score

UW

ONE

TWO

THREE

T

AHW N

RTH IY

19 Nov 1999 Sphinx Speech Group, CMU-SCS (rkm@cs.cmu.edu)

Continuous Speech Recognition
• Add null transitions from word ends to beginnings:

• Apply Viterbi search algorithm to the modified network
• Q: How to recover the recognized word sequence?

UW

ONE

TWO

THREE

T

AHW N

RTH IY

19 Nov 1999 Sphinx Speech Group, CMU-SCS (rkm@cs.cmu.edu)

• Each word exit recorded in the BP table:

• Upon transitioning from an exited word A to another B:
• Inject pointer to BP table entry for A into start state of B. (This

identifies the predecessor of B.)
• Propagate these pointers along with path-scores during Viterbi

search

• At end of utterance, identify best exited word and trace
back using predecessor pointers

The Backpointer Table

time

Word ID
Path Score

Predecessor BP Entry

BP table entry

19 Nov 1999 Sphinx Speech Group, CMU-SCS (rkm@cs.cmu.edu)

The Backpointer Table (contd.)
• Some additional information available from BP table:

• All candidate words recognized during recognition
• Word segmentations
• Word segment acoustic scores
• “ Lattice density” : No. of competing word hypotheses at any

instant

• Useful for postprocessing steps:
• Lattice rescoring
• N-best list generation
• Confidence measures

19 Nov 1999 Sphinx Speech Group, CMU-SCS (rkm@cs.cmu.edu)

Beam Search (Pruning)
• Exhaustive search over large vocabulary too expensive,

and unnecessary

• Use a “ beam” to “ prune” the set of active HMMs:
• At start of each frame, find best available path-score S
• Use a scale-factor f (< 1.0) to set a pruning threshold T = S*f

• Deactivate an HMM if no state in it has path score >= T

• Effect: No. of active HMMs larger if no clear frontrunner

• Two kinds of beams:
• To control active set of HMMs

• No. of active HMMs per frame typically 10-20% of total space

• To control word exits taken (and recorded in BP table)
• No. of words exited typically 10-20 per frame

• Recognition accuracy essentially unaffected

19 Nov 1999 Sphinx Speech Group, CMU-SCS (rkm@cs.cmu.edu)

Incorporating a Language Model
• Language models essential for recognition accuracy

• Reduce word error rate by an order of magnitude
• Reduce active search space significantly

• Implementation: associate LM probabilities with
transitions between words. E.g.:

P(two | three)

P(two | one)

P(two | two)UW

ONE

TWO

THREE

T

AHW N

RTH IY

19 Nov 1999 Sphinx Speech Group, CMU-SCS (rkm@cs.cmu.edu)

Bigram Backoff Language Model
• Two issues with large vocabulary bigram LMs:

• With vocabulary size V and N word exits per frame, NxV cross-
word transitions per frame

• Bigram probabilities very sparse; mostly “ backoff” to unigrams

• Optimize cross-word transitions using “ backoff node” :
• Viterbi decision at backoff node selects single-best predecessor

Lexicon

A

B

Backoff node

A’s bigram successors

B’s bigram successors

19 Nov 1999 Sphinx Speech Group, CMU-SCS (rkm@cs.cmu.edu)

Cross-Word Triphone Modeling
• Sphinx uses “ triphone” or “ phoneme-in-context” HMMs

• Cross-word transitions use appropriate exit-model, and
inject left-context into entry state

AHONE W N

Context-
dependent
AH HMM

Separate
N HMM
instances
for each
possible
right
context

Multiplexed W HMM; inherited left context
propagated along with path-scores, and
dynamically modifies the state model
(Replication is too expensive)

19 Nov 1999 Sphinx Speech Group, CMU-SCS (rkm@cs.cmu.edu)

Sphinx-3 Search Algorithm
initialize start state of <S> with path-score = 1;
for each frame of input speech {

evaluate all active HMMs; find best path-score, pruning thresholds;
for each active HMM {

if above pruning threshold {
activate HMM for next frame;
transition to and activate successor HMM within word, if any
if word-final HMM and above word-pruning threshold

record word-exit in BP table;
}

}
transition from words exited into initial state of entire lexicon (using the

LM), and activate HMMs entered;
}
find final </S> BP table entry and back-trace through table to retrieve result;

19 Nov 1999 Sphinx Speech Group, CMU-SCS (rkm@cs.cmu.edu)

Lextree Search: Motivation
• Most active HMMs are word-initial models, decaying

rapidly subsequently
• On 60K-word Hub-4 task, 55% of active HMMs are word-initial
• (Same reason for handling left/right contexts differently.)

• But, no. of distinct word-initial model types much fewer:

• Use a “ prefix-tree” structure to maximize sharing
among words

START S-T-AA-R-TD
STARTING S-T-AA-R-DX-IX-NG
STARTED S-T-AA-R-DX-IX-DD
STARTUP S-T-AA-R-T-AX-PD
START-UP S-T-AA-R-T-AX-PD

19 Nov 1999 Sphinx Speech Group, CMU-SCS (rkm@cs.cmu.edu)

Lextree Structure in Sphinx-3.2

• Nodes shared if triphone “ State-Sequence ID” (SSID)
identical

• Leaf (word-final) nodes not shared
• In 60K-word BN task, word-initial models reduced ~50x

S T AA

R

R T

TD

DX
IX

IX

NG

DD

AX
PD

PD

start

starting

started

startup

start-up

19 Nov 1999 Sphinx Speech Group, CMU-SCS (rkm@cs.cmu.edu)

Cross-Word Triphones (left context)

• Root nodes replicated for left context
• Again, nodes shared if SSIDs identical
• During search, very few distinct incoming left-contexts at any

time; so only very few copies activated

S T AA

R

R T

TD

DX
IX

IX

NG

DD

AX
PD

PD

start

starting

started

startup

start-up

left-contexts

to rest of lextree

S-models for
different left
contexts

19 Nov 1999 Sphinx Speech Group, CMU-SCS (rkm@cs.cmu.edu)

Cross-Word Triphones (right context)
• Leaf nodes use “ composite” SSID models

• Simplifies lextree and backpointer table implementation
• Simplifies cross-word transitions implementation

Leaf node Triphones for all right contexts

HMM
states for
triphones

unique
states

composite
states;

average of
component

states

Composite SSID model

19 Nov 1999 Sphinx Speech Group, CMU-SCS (rkm@cs.cmu.edu)

Lextree Search: LM Integration
• Problem: LM probabilities cannot be determined upon

transition to lextree root nodes
• Root nodes shared among several unrelated words

• Several solutions possible:
• Incremental evaluation, using composite LM scores

• Lextree replication (Ney, Antoniol)
• Rescoring at every node (BBN)

• Post-tree evaluation (Sphinx-II)

19 Nov 1999 Sphinx Speech Group, CMU-SCS (rkm@cs.cmu.edu)

• Incremental LM score accumulation; e.g. (bigram LM):

• Large computation and memory requirements
• Overhead for dynamic lextree creation/destruction

LM Integration: Lextree Replication

A

B
S = set of words
reachable from x

x

W ε S
LM probability entering into x = Sum [P(W | B)]

B

LextreeA

LextreeB

LextreeC

19 Nov 1999 Sphinx Speech Group, CMU-SCS (rkm@cs.cmu.edu)

• Again, incremental LM score accumulation:

• Still, large computation/memory requirements and
overhead for dynamic lextree maintenance

• Multiple LM transitions between some word pairs

Lextree Copies With Explicit Backoff

A

B

unigram
lextree

lextree for bigrams of A

lextree for bigrams of B

B

backoff node through
which all word exits
transition to unigram
lextree

19 Nov 1999 Sphinx Speech Group, CMU-SCS (rkm@cs.cmu.edu)

Post-Lextree LM Evaluation (Sphinx-II)
• Single lextree

• Null transitions from leaf nodes back to root nodes

• No LM score upon transition into root or non-leaf node
of lextree

• If reached a leaf node for word W:
• Find all possible LM histories of W (from BP table)
• Find LM scores for W w.r.t. each LM history
• Choose best resulting path-score for W

• Drawbacks:
• Inexact acoustic scores

• Root node evaluated w.r.t. a single left context, but resulting score
used w.r.t. all histories (with possibly different left contexts)

• Impoverished word segmentations

19 Nov 1999 Sphinx Speech Group, CMU-SCS (rkm@cs.cmu.edu)

Word Segmentation Problem

Q: Which transition wins?
• Flat lexicon (separate model per word):

• At A: word ninety entered with LM score P (ninety | ninety)

• At B: word ninety entered with P (ninety | nineteen)
• Since the latter is much better, it prevails over the former

• Result: correct recognition, and segmentation for ninety

nineteen ninety

ninety ninety

nineteen

ninety
ninety

correct segmentation for ninety

incorrect segmentation for ninety

Assume P (ninety | nineteen) > P (ninety | ninety).

Decision points: A B C

19 Nov 1999 Sphinx Speech Group, CMU-SCS (rkm@cs.cmu.edu)

Word Segmentation Problem (contd.)

• Tree lexicon:
• At A: root node for ninety entered without any LM score
• At B: Attempt to enter root node for ninety again

• Transition may or may not succeed (no LM score used)

• At C: obtain LM score for ninety w.r.t. all predecessors
• If transition at B failed, the only candidate predecessor is ninety;

result: incorrect segmentation for ninety(2), incorrect recognition

nineteen ninety

ninety ninety

nineteen

ninety
ninety

correct segmentation for ninety

incorrect segmentation for ninety

Assume P (ninety | nineteen) > P (ninety | ninety).

Decision points: A B C

19 Nov 1999 Sphinx Speech Group, CMU-SCS (rkm@cs.cmu.edu)

Lextree-LM Integration in Sphinx-3.2
• Post-lextree LM scoring (as above); however:
• Limited, static lextree replication

• Limits memory requirements
• No dynamic lextree management overhead

• Transitions into lextrees staggered across time:
• At any time, only one lextree entered

• “ -epl” (entries per lextree) parameter: block of frames one lextree
entered, before switching to next

• More word segmentations (start times) survive

• Full LM histories; if reached a leaf node for word W:
• Find all possible LM histories of W (from BP table)
• Include LM scores for W w.r.t. each LM history

• Create a separate BP table entry for each resulting history

19 Nov 1999 Sphinx Speech Group, CMU-SCS (rkm@cs.cmu.edu)

Pruning in Sphinx-3.2
• Pure beam-pruning has long-tailed distribution of active

HMMs/frame
• Absolute pruning to control worst-case performance:

• Max. active HMMs per frame
• Implemented approximately, using “ histogram pruning” (avoids

expensive sorting step)

• Max. unique words exiting per frame
• Max. LM histories saved in BP table per frame
• Word error rate unaffected

• Additional beam for lextree-internal, cross-HMM
transitions

• Unigram “ lookahead” scores used in lextree for yet
more pruning

19 Nov 1999 Sphinx Speech Group, CMU-SCS (rkm@cs.cmu.edu)

Sphinx-3.2 Performance
• 1997 BN eval set, excluding F2 (telephone speech)
• 6K tied-state CHMM, 20 density/state model (1997)
• 60K vocab, trigram LM

--
--

--
100
50

100
100

--
--

--
10K
10K
10K
10K

26.8
29.3

28.2
28.2
28.3
28.7
29.3

--
9.2

5.2
5.2
5.4
7.2
9.3

78.0K
12.9K

6.8K
5.8K
5.8K
5.2K
3.4K

25*
9*

42
35
25
34
32

42.0
12.2

2.4
2.2
2.0
1.4
1.0

49.0
19.2

7.4
7.2
7.1
5.9
6.0

400
400

400
400
400
450
400

--
--

20
20
20
20
20

flat-wb
flat-nb

trees:3
3
3
2
1

config wd/f bp/f hmm/f WER %incr hmm/f bp/f srch total MHz
pruning param. activeWER xRT P-III

19 Nov 1999 Sphinx Speech Group, CMU-SCS (rkm@cs.cmu.edu)

Sphinx-3.2 Performance (contd.)
• 1998 BN Eval set
• 5K tied-state CHMM, 32 density/state model (1998)
• 60K vocab, trigram LM

--

--
--

100
--

100
50
30

100
100

--

--
20K
20K
10K
10K
10K
10K
10K
10K

21.5

22.0
22.0
22.0
22.1
22.1
22.1
22.1
22.4
23.2

103K

10.8K
9.7K
9.7K
7.9K
7.9K
7.9K
7.9K
7.2K
5.1K

9*

52
52
41
52
40
29
21
39
38

42.7

3.1
3.1
3.3
3.3
2.6
2.8
2.6
2.0
1.4

49.3

8.5
8.4
9.2
9.2
7.9
8.6
8.5
7.3
6.6

425*

450
450
400
400
450
400
400
450
450

10

20
20
20
20
20
20
20
20
20

flat-wb

trees:3
3
3
3
3
3
3
2
1

config wd/f bp/f hmm/f WER %incr hmm/f bp/f srch total MHz
pruning param. activeWER xRT P-III

--

2.3
2.3
2.3
2.8
2.8
2.8
2.8
4.2
7.9

19 Nov 1999 Sphinx Speech Group, CMU-SCS (rkm@cs.cmu.edu)

Sphinx-3.2 Performance (contd.)
• Effect of absolute pruning parameters (1998 BN):

• (Per frame) computation stats for each utterance
• Distribution of stats over entire test set (375 utts)

• Absolute pruning highly effective in controlling variance
in computational cost

--
--

100
--

100
50
30

--
20K
20K
10K
10K
10K
10K

11.2K
10.0K
10.0K

8.1K
8.1K
8.1K
8.1K

46.3K
29.1K
29.1K
17.1K
17.1K
17.1K
17.3K

5.5K
3.8K
3.8K
2.2K
2.2K
2.2K
2.2K

53
53
41
53
41
30
21

220
220
90

216
90
47
29

24.6
24.5
12.3
24.4
12.4

5.8
2.9

3.2
3.2
3.4
3.4
2.7
2.9
2.7

33.5
31.5
21.4
31.6
13.7
11.6

9.7

2.7
2.6
2.2
2.6
1.4
1.3
1.1

hmm/f bp/f Mean Max StDev. Mean Max StDev. Mean Max StDev.
Active HMM/fr BPtbl entries/fr Srch. xRT

19 Nov 1999 Sphinx Speech Group, CMU-SCS (rkm@cs.cmu.edu)

Conclusions
• 10x CHMM system available (thanks to P-!!!)
• With lextree implementation, only about 1-2% of total

HMMs active per frame
• Order of magnitude fewer compared to flat lexicon search

• Lextree replication improves WER noticeably
• Absolute pruning parameters improve worst-case

behavior significantly, without penalizing accuracy
• When active search space grows beyond some threshold, no

hope of correct recognition anyway

19 Nov 1999 Sphinx Speech Group, CMU-SCS (rkm@cs.cmu.edu)

What Next?
• Tree lexicon still not as accurate as flat lexicon baseline

• Residual word segmentation problems?
• Try lextree replication?

• Use of composite SSID model at leaf nodes?
• Parameters not close to optimal?

• HMM state acoustic score computation now dominant
• Back to efficient Gaussian selection/computation

